
Spatial Disorder and Degradation Kinetics in Intrinsic Biodegradation Schemes

Randall A. LaViolette,* ,† M. E. Watwood,‡ T. R. Ginn,§ and D. L. Stoner†

Idaho National Engineering and EnVironmental Laboratory, P.O. Box 1625, Idaho Falls, Idaho, 83415-2208,
Department of Biological Sciences, Idaho State UniVersity, Pocatello, Idaho, 83209-8007, and Department of
CiVil and EnVironmental Engineering, UniVersity of California - DaVis, DaVis, California 95616

ReceiVed: December 7, 1998; In Final Form: April 7, 1999

The restoration of contaminated soils by intrinsic biodegradation employs microorganisms in the subsurface
that degrade the contaminant substrate infiltrating the subsurface matrix. The outcome of intrinsic biodegradation
has been difficult to predict. We examine a source of the difficulty with a computational model of diffusive-
reactive transport that introduces spatial disorder in the arrangement of the degrading microorganisms. Spatial
disorder alone, even on the small scales that characterize the distance between aggregates of microorganisms,
is enough to induce a wide range of times to complete the degradation to an arbitrary limit. The mean time
for the concentration to achieve the limit becomes twice that for the case of spatial order. Bounds on the
range of the effective degradation kinetics can be obtained by computing the distribution of times to complete
degradation.

I. Introduction

Intrinsic biodegradation has gained widespread attention as
a remedial option at many sites.1 Biodegradation takes advantage
of the subsurface microbial communities that degrade organic
contaminants.2-4 Intrinsic biodegradation is considered feasible
as a restoration technique when indigenous subsurface microbial
communities transform the contaminants to an acceptable
concentration and within an acceptable time interval.1 Therefore
we are concerned in this work with the question: “How long
will intrinsic biodegradation take?” It turns out that biodegrada-
tion in the field often requires more time than what would have
been predicted from the degradation rates measured in the
laboratory.5-7 There are myriad plausible explanations for this
type of discrepancy, including competition for nutrients and
other trophic interactions, toxicity responses, and threshold
effects.5 Each of these explanations depends on the circum-
stances at a particular contaminated site, and each explanation
requires characterization studies that might never be carried out.
Instead, we will show how the disorder in the placement of
microorganisms in an otherwise homogeneous subsurface can
contribute to this discrepancy.

Here we are concerned with the consequences of disorder in
the trap locations upon the large-scale degradation kinetics of
a fluid contaminant substrate in a homogeneous matrix. Our
motivation comes from the theoretical demonstration that spatial
fluctuations in the distances between randomly located traps
can introduce kinetic or transport anomalies in a variety of
circumstances.8,9 The picture that emerges from those studies
is that in an ordered or homogeneous system, all locations are
equally “dangerous” for the diffusing substrate; in the disordered
system, trap-free regions appear where the substrate can remain
“safe” for long times. The theoretical results suggested to us
that investigation of similar behavior for a model intrinsic
biodegradation process would be worthwhile. The plausible

assumption that spatial fluctuations in trap positions, because
they occur on relatively small distance scales, would not
qualitatively affect macroscale transport is routinely invoked
to reduce the effort involved in transport calculations. In most
transport calculations, spatial averages are performed over
distances far in excess of those that describe the fluctuations in
trap positions, thereby averaging awaya priori the fluctuations
that might result from random trapping. Although many
plausible justifications can be invoked for this kind of averaging,
this crucial assumption deserves a direct test. Such a test is the
goal of this paper.

II. Diffusion-Reaction Model

We seek to understand the discrepancy in degradation rates
between laboratory studies and field observations with a
computational study of a simple mathematical model. Our
assumptions for the kind of system under investigation here
include (i) degradation occurs at a finite number of traps
randomly distributed in the subsurface;10,11(ii) traps are localized
colonies of microorganisms that do not move, grow, or die but
irreversibly remove (i.e., immobilize or transform) contaminant
substrate at a finite rate, described by the Michaelis-Menten
rate law;5 (iii) the subsurface matrix itself is sufficiently
homogeneous to exclude transport anomalies arising in the
absence of traps (anomalies arising purely from heterogeneities
in the matrix are elucidated in ref 12); (iv) transport is essentially
diffusive.

As indicated in assumption (iv) above, the scope of this study
is restricted to diffusive transport regimes, reflecting low Peclet
number (Pe< 1) transport by groundwater. This case provides
a simplified starting point for study of the effect of biochemical
heterogeneity on field-scale solute degradation and is also a
reasonable representation of fate and transport processes at sites
involving low or no convection. Examples include contamination
of deep regional aquifers in semiarid environments, near-surface
contamination of soils with low hydraulic conductivity, and other
contaminated groundwater environments targeted restoration by
intrinsic biodegradation strategies that are absent of flow
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acceleration measures.13 The incorporation of convective and
dispersive processes would have a limiting effect on the
residence time of the substrate (with respect to the fixed traps)
and therefore would affect the outcome of intrinsic biodegrada-
tion, but this is beyond the scope of our work. A system
dominated by convection would be much less prone to the
anomalies we report below; however, such a system would not
be considered for bioremediation in the first place, because of
the short residence time near each trap that such convection
would impose. Thus we dropped the advection term in the
transport equation that is usually employed to describe subsur-
face contaminant transport.14

Next, we consider the transport, then the degradation kinetics,
of the substrate and combine the two into a simple model below.
The kinetics of many of the most useful biodegradation pro-
cesses (in which the microorganisms consume substrate but do
not grow) are often well-described by the venerable Michaelis-
Menten (or “Monod-no-growth”) rate law,5 which is nonlinear
in the concentration, as follows:

wherec is the volumetric mass concentration of the substrate,
R > 0 is the volumetric mass removal rate,c+ < c(0) is a
concentration “half-saturation”, andt is time. The Michaelis-
Menten rate law is an empirical interpolation between two
observed regimes of degradation behavior. Forc . c+, the
degradation rate nearly follows zeroth-order kinetics (rate is
independent of concentration), so thatc declines linearly with
time. Forc , c+, the degradation rate nearly follows first-order
kinetics (rate is linear in concentration), so thatc decays
exponentially with time. The most effective of these two regimes
for biodegradation should be the zeroth-order regime.15 How-
ever, the zeroth-order rate law by itself would give overly
optimistic predictions regarding the time required to reach a
particular endpoint concentration. The first-order regime with
its essentially exponential decay tends to lengthen the time
required for a degradative process to achieve a specified
contaminant concentration. The timet* when the contaminant
concentration “crosses over” from essentially zeroth-order to
first-order rate law can be used to define the most significant
interval for a given degradative process (alternatively, the “half-
life” t1/2 is also often reported;16 here,t1/2 ≈ t* /2). This type of
crossover has been observed for the biodegradation of several
organic chemicals, including maleic hydrazide in soil and
glucose and linear alcohols in bay water.5 The crossover time
may correspond to the inflection point on a typical “diminishing
returns curve” that relates the desired endpoint concentration
to the cost that is required to achieve the endpoint. This type of
plot is often generated during negotiations with regulatory
officials in order to establish remediation endpoint concentra-
tions, in cases where such endpoints are otherwise unclear.17

Our model combines the reaction kinetics and the diffusive
transport of the substrate. We represent the subsurface matrix
as an evenly spaced linear lattice ofN nodes; thus the matrix
would be homogeneous apart from the traps. In a two- or three-
dimensional flow, this lattice would be best taken to correspond
to a transverse direction of a constant-velocity flow, in keeping
with our intent to model essentially diffusive transport. The
distance between nodes∆x is set toλ/n, whereλ is the mean
distance between traps andn is chosen so that there are on
average (n - 1) nodes between each trap. The relation between

the timet, positionx, and degradation rateR to their dimension-
less counterpartsτ, ν, andF is given by

respectively whereν is an integer that labels the nodes. In these
dimensionless units, which we employ hereafter, the distance
between nodes (∆x) is unity, as is the diffusion constantD,
and the relationship between the mass transport and the
degradation rate is absorbed in the specification ofF. Combining
all of these considerations produced the desired diffusion-
reaction equation for the substrate:

The first term on the right-hand side of (3) represents diffusion
on the lattice. The second term on the right-hand side of (3) is
the discretized degradation rate. The effect of the discretization
on this term is to limit the range of the interaction of the trap
to the space halfway between each of the neighboring nodes.

Next, we considered two cases for the trap distributions:

In each case the traps remain fixed on the lattice. Case P
corresponds to the common practice, where the mean degrada-
tion rate parameter taken from the laboratory is inserted into a
model for transport of the fluid in the matrix. The periodic
distribution implements the mean degradation rate assumption
for this model. Case R corresponds to the situation where each
configuration has a disordered placement of traps arising out
of the same “uniform random” distribution, but each configu-
ration has a different placement of traps from any other
configuration. The distribution of traps in case R is not quite
uniformly random, because we require that no two traps can be
closer to each other than the lattice spacingλ/n. In this work
the degradation rate is the same for each trap, although it would
have been easy to impose a distribution of trap rates as well as
trap locations.

To solve (3), we need to specifyn, the initial conditions, the
boundary conditions,c+, and γ for the cases P and R,
respectively. We setn ) 10 throughout. We imposed the
Dirichlet condition for the endpoints (cN ) c-N ) 0) and
adjustedN so that the concentration near either of the boundaries
was always negligible (2500e N e 5000). The initial unit mass
(or volume) of the substrate (V(0) ) ∑ν)-N

N cν(0) ) 1) was
distributed symmetrically about the origin so thatcν(0) ) 1/11
for -5 e ν e 5 and cν(0) ) 0 otherwise. A wider initial
distribution would requireN to be larger, and one narrower
seems unrealistic to us; in any case, this choice of initial
conditions is convenient, but not necessary, to obtain the
conclusions described in the following sections. We choseγ )

dc(t)
dt

)
-Rc(t)

c+ + c(t)
(1)

x ≡ νλ
n

t ≡ τ
(λ/n)2

D

F ≡ λ2R

n2D
(2)

(3)

P (periodic)
Fν ) γ (a positive constant) ifν is a multiple ofn,

Fν ) 0 otherwise

R (random)Fν ) γ with probability 1/n, Fν ) 0 otherwise
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0.0001 andc+ ) 2γ, independently ofν; thusγλ2 , D for P.
We then solved (3) with a second-order (in time) Runge-Kutta
algorithm18 for a fixed time step of∆τ ) 0.1; one trajectory
for each configuration of traps, until maxν{cν(τstop)} ) 10-8

(which definesτstop).
Our choice ofγ ) 10-4 corresponds to a moderately efficient

biological degradation rate of trichloroethene in the laboratory,
when reasonable choices are made for the unit length, unit time,
and trap size. For the sake of discussion and without affecting
any of our results (which are independent of specific values for
these parameters), we show how reasonable choices for these
parameters might be made. One may assume that there is on
average one trap per cubic centimeter of matrix. This choice
would giveλ ) 1 cm, and withn ) 10 above, the unit length
would become 0.1 cm. With this choice andD ) 10-5 cm2/s
(unity in our reduced units), which is typical for the diffusion
of molecules in water, one would obtain the unit time of 1000
s. Next, each trap, in a moderately fertile matrix, would consist
of 10-5 g of active cells, recalling that the cells have a density
of 1012 cells/g and that a fertile soil is thought to have more
than 107 active cells/cm3 of matrix.5 Finally, one may assume
that the density of the substrate is near that of water. Combining
all of these considerations implies that our choice ofγ ) 10-4

would correspond to about 1 g[substrate]/(g[cell] day). In optimized
bioreactors, with extra nutrients injected, the biodegradation rate
for trichloroethene can reach 100 g[substrate]/(g[cell] day),19 but such
a high degradation rate would not be achieved in soils without
extra nutrients, stirring, and temperature control, so we chose
to be conservative.

III. Results

We calculated one trajectory for P. For R, we calculated one
trajectory for each of 100 independent randomly generated trap
configurations on the lattice, collecting values from each
trajectory every 100 time steps. We found the crossover time
τ* numerically by maximizing

with respect toτ. We show first the total substrate mass (or
volume)V(τ), defined byV(τ) ≡ ∑ν cν(τ). The solutions for P
are qualitatively indistinguishable from those provided by eq 3
whereF is constant everywhere on the line. Figure 1 shows
that for P, V follows the anticipated pattern of substantially linear

decay until the crossover timeτ* is reached, after which it
undergoes essentially exponential decay, indicated by the linear
behavior in the logarithmic plot. The results are summarized in
Table 1. Even with substantial diffusion, the behavior ofV in
P is not substantially different from the behavior expected of a
system with no net transport (eq 1), e.g., a reaction in a
continuously stirred flask. The crossover and stopping times
(τ* and τstop, respectively) for the “single-site” nondiffusing
system are close to the values obtained for P. In other words,
P is reaction-limited, not diffusion-limited.

The degradation of the substrate in the presence of randomly
placed traps (R) is more difficult to assess. We did not detect
in R the “stretched exponential” decay (c(t) ∝ exp(-tâ), 0 < â
< 1) that is often associated with dispersive kinetics9 before
our self-imposed concentration limit was achieved. Instead, we
found that at least 12 decades of concentration reduction are
required in this model before we observe the beginning of
stretched exponential decay. Without further work, we might
have concluded that no significant anomalies would occur,
because the degradation remains reaction-limited in this case
also, for all times and concentrations of interest. Nevertheless,
the trajectories in R display an abundance of anomalous and
widely varying kinetic behavior. Figure 2 showsV(τ) for each
of the trajectories in R and, for comparison, the trajectory
calculated for P: The broad distribution ofV is evident. Similar
considerations apply qualitatively to the maximum concentration
cmax. The lack of sensitivity to the initial concentration distribu-
tion can be inferred from the fact that the anomalies became
apparent at times that are greater than the time required for the
initial concentration to spread several times larger than the initial
width. Consequently, little if any of the variation in the
trajectories is due to fluctuations in the placement of traps near

Figure 1. Depletion of the mass vs time for the periodic array of traps
for P. The solid curve and solid circles correspond to the linear and
logarithmic axes, respectively. The dashed and dotted curves show the
roughly linear and exponential behavior, respectively.

TABLE 1: Values of Parameters for Homogeneous,
Ordered, and Disordered Configurations of Trapsa

parameters
no diffusion,

one trap (eq 1)
periodic traps

(case P)
random traps

(case R)

t* 990 1050 930
cmax(t*) 0.00010 0.00030 0.0026
V(t*) 0.00010 0.012 0.14
tstop 1040 1350 3000
V(tstop) 10-8 (exact) 5.9× 10-7 3.1× 10-7

a For R, the values are the means obtained by averaging over the
100 trap configurations and are reported to only two significant figures.

Figure 2. Depletion of the mass vs time for R. The solid and dotted
curves correspond to the linear and logarithmic axes, respectively.
Results from Figure 1 (P) are superimposed for reference: white and
black circles correspond to the linear and logarithmic axes, respectively.

V̈ ≈ V(τ + ∆τ) + V(τ - ∆τ) - 2V(τ) (4)
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the initial concentration distribution, but instead it is due to the
much wider variation in the placement of traps further away
from the initial distribution.

For each configuration we computed the crossover timeτ*
andV* ) V(τ* ) via (4). The distributions of bothτ* andV*,
which were reconstructed from their moments via maximum
entropy,20 are shown in Figures 3 and 4, respectively. The
distribution ofτ* is narrow and nearly normally distributed, so
that the configuration average ofτ* is also nearly a typicalτ* .
Furthermore, the configuration average ofτ* for R is nearly
that of P. In contrast, the distribution of theV* is very broad;
in fact, it is nearly exponentially distributed. Thus the config-
uration average ofV* is very far from the typicalV*. Figure 5
shows that the distribution of stopping timesτstop is compli-
cated. The bulge in its tail persists far beyond the configuration
average and gives it a bimodal character. Furthermore, the mean
τstop is both longer than the typicalτstop (corresponding to the
maximum of the distribution) and more than twice as long as
the mean for P (Table 1). Figure 6 shows the distribution of
V(τstop), which is broad, possesses a long tail, and is also
apparently bimodal. These results together show that a wide
range of kinetic behavior, including an anomalous increase in
the time required to finish degradation, can result from nothing
more than disorder in the placement of degrading sites in the
subsurface.

IV. Discussion and Conclusions

We began by asking why the degradation kinetics that are
measured in a homogeneous system in the laboratory, e.g., a
continuously stirred flask, often seem faster, and much more
narrowly distributed, than the degradation kinetics in the field.
The complexity of the subsurface matrix, toxicity responses,
trophic interactions, and threshold effects, among many others,
all surely play a role in the outcome.21 We have shown that
this outcome also can be obtained simply from changing the
placement of fixed microorganisms from ordered (periodic) to
disordered (random) in an otherwise homogeneous subsurface
matrix. Specifically, we found that the spatial fluctuations
created by a random distribution of identical traps can substan-
tially increase the mean time for biodegradation to reduce the
initial concentration of contaminant substrate to prescribed
levels. More importantly, the breadth and bimodality of the
distributions of the stopping times imply that any one config-
uration of traps can support substantially different degradation
behavior from any other, even though both configurations were
generated from the same distribution.

To apply the mean degradation behavior obtained in the
laboratory directly to the situation in the field, where there is
no opportunity to sample other configurations, the degradation
rate for any particular configuration would need to have only a
small deviation from the average. Our results suggest that,

Figure 3. Distribution of crossover times from case R. The solid curve
corresponds to the 4-moment maximum-entropy distribution; solid
circles show the results of binning.

Figure 4. Distribution of mass at the crossover time from case R.
Symbols are as in Figure 3.

Figure 5. Distribution of stopping times from case R. Symbols are as
in Figure 3.

Figure 6. Distribution of mass at the stopping time from case R.
Symbols are as in Figure 3.
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instead, the dispersion in degradation behavior introduced by
the disorder in the trap placement is a factor that should be
recognized explicitly in the assessment of intrinsic biodegrada-
tion restoration schemes. The kind of calculations employed
here, for an ensemble of configurations rather than for a single
spatially averaged configuration, can provide reasonable bounds
on the range of expected behavior of the contaminant substrate
for a more realistic assessment of intrinsic biodegradation
schemes for the restoration of contaminated soils.
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